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Società Italiana di Fisica
Springer-Verlag 2002

Hyperviscous diblock copolymer vesicles

R. Dimova1,2,a, U. Seifert1,4, B. Pouligny2, S. Förster3, and H.-G. Döbereiner1
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Abstract. Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-
PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common
phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of
such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in
the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome
and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between
the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an
order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are
tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes
them interesting candidates for a number of technological applications.

PACS. 83.50.Lh Slip boundary effects (interfacial and free surface flows) – 83.85.Jn Viscosity measure-
ments – 87.16.Dg Membranes, bilayers, and vesicles – 87.80.Cc Optical trapping

1 Introduction

Bilayer membranes are probably the best-studied
supramolecular architecture employed in nature. Indeed,
in their biological relevant state most lipids form fluid
membranes, which provide the boundaries of cellular or-
ganelles and for the cell itself. However, under appro-
priate conditions many other amphiphilic molecules self-
assemble in an aqueous environment into bimolecular
sheets. These bilayer membranes may close up into vesi-
cles or form bulk lamellar phases. A particular interesting
class of molecules are linear amphiphilic diblock copoly-
mers. Whereas their thermodynamic phases as melts are
reasonably well understood [1], their lyotropic behav-
ior is only beginning to emerge [2,3]. Recently, single
giant vesicles could be swollen from polyethylethylene-
polyethyleneoxide (PEE-PEO) in aqueous solution [4].
These, so-called polymersomes, were used to character-
ize the elastic properties of polymer membranes. However,
not much is known about other properties. Their viscous
behavior, which will be the focus of this paper, has not
been studied before.

In contrast, physical properties of lipid bilayers are
well documented [5,6]. In particular, there is a long his-
tory of research papers elucidating membrane elasticity
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and morphology as well as membrane viscosity [7]. Elas-
tic deformations of a membrane include bending, stretch-
ing and shear. For lipids in fluid phase, bending elastic
moduli are found to be on the order of 10 kBT . Thus,
lipid membranes are subject to thermally excited fluctu-
ations of their morphological conformation. Stretching a
membrane is considerably harder in comparison. There is
a constant equilibrium membrane area at zero external
force. Typically, stretching elastic moduli are measured
to be on the order of 100 dyn/cm. Polymer membranes
have similar elastic properties, except that they are much
tougher than lipids, i.e., they are considerably harder to
break under tension [4]. Response to shear depends on
the state of the membrane. Lipids are known to undergo
a gel-fluid transition with temperature. In the gel state,
lipid membranes possess finite shear elasticity. Above the
transition temperature, in the fluid state, there is no static
resistance to shear. However, membranes do oppose shear
deformations dynamically. Typically, one finds surface vis-
cosities on the order of 10−6 dyn s/cm [8,9]. In contrast,
our polymer membranes are much more viscous with a
three orders of magnitude larger surface viscosity. Never-
theless, the membranes studied are in a fluid state, well
above the glass transition.

Thus, diblock-copolymer membranes show tough-
ness against mechanical stress and robust rheological
behavior. These properties as well as the absence of a ther-
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mal transition of their membrane at ambient temperatures
and in the physiological temperature range make them an
exciting new class of materials. Indeed, diblock-copolymer
vesicles were shown to be quite promising for biomedical
applications like drug delivery [10]. Essential for encapsu-
lation and delivery of agents are the thermo-mechanical
characteristics of the transporting unit [11]. The proper-
ties of the carrier shell have to be within certain limits of
stability, stiffness, permeability, etc. Compared to lipids,
polymer chemistry allows do design these properties rela-
tively easily. Further, the use of polymersomes is not lim-
ited to biomedical applications in aqueous environments;
other solvent systems have been explored as well [12].

For our study we employ giant vesicles made from
the diblock polybutadiene-b-polyethyleneoxyde (PB-
PEO, s-Bu-[CH2-CH(C2H3)]32-[O-CH2-CH2]20-OH) [13].
Compared to ethylethylene, butadiene has an additional
double bond allowing polymerization of the membrane
via ultraviolet radiation. Giant vesicles were chosen as
an ideal system for studying fundamental properties of
bilayer membranes [14]. Due to their relatively large size,
they are readily visible under a microscope and allow
direct observation.

To set the stage for our experimental results and
later data analysis, we discuss now the physics of viscous
dissipation in a vesicle system. The general response of a
vesicle membrane to the application of an external force or
a thermal kick involves flow of water due to the displace-
ment of the membrane surface, flow of molecules inside
the bilayer membrane and relative movement of the two
monolayers with respect to each other. There is viscous
energy loss in all three cases characterized by bulk water
viscosity, membrane surface viscosity and interlayer drag
[15–17], and in the latter two dissipation occurs within the
membrane. For phospholipid vesicles dissipation in the
bulk water is dominant on length scales accessible with
video microscopy. Only modes below a micron are subject
to membrane dissipation. In contrast, for polymer mem-
branes the effects of both membrane dissipative mecha-
nisms are significantly larger. Hence, one expects that even
shape fluctuations above the micron scale are strongly
affected if not dominated by membrane dissipation.

We measured surface viscosity by observing the move-
ment of a latex particle attached to a vesicle membrane [8,
9,18]. Either the particle was allowed to sediment under
gravity along the vesicle surface (falling-ball viscosimetry)
or was pulled into an optical trap placed slightly off-center
from the bead (optical dynamometry). Further, we em-
ployed tether-pulling experiments [15,19–21] in order to
probe intermonolayer drag [19]. Extracting a tether from
a giant vesicle is a versatile technique. It not only gives in-
formation on viscous properties [22] and flip-flop rates [21,
23] but also allows to characterize membrane bending elas-
ticity [15,24,25]. Elastic moduli as well as membrane spon-
taneous curvature [26,27] can be measured on a nanometer
length scale. Earlier, monolayer coupling had been mon-
itored via fluorescence recovery after photobleaching in
supported bilayers [28]. We employed micropipette aspi-
ration [29–31] to obtain elastic bending and stretching

moduli. They are deduced from the observation of vesi-
cle membrane extension into pipettes with diameters of
several micrometers as a function of suction pressure.

After detailing polymer preparation and experimental
techniques used, we present our results on viscoelastic be-
havior of polymer membranes. Extended new theoretical
analysis is performed on tether-pulling data of highly vis-
cous membranes. The paper closes with a discussion and
an outlook.

2 Experimental procedures

The diblock copolymer used here was synthesized accord-
ing to Förster and Krämer (1999) [13]. The molecular-
weight distribution was determined by Gel Perme-
ation Chromatography. The weights polydispersity was
Mw/Mn ≈ 1.05, where Mn and Mw are, respectively, the
number and the weight average molecular weights. The
ratio of 1,2- versus 1,4-butadiene is 9:1. The dry polymer
melt was stored in the freezer at −20 ◦C. Stock solutions
were made using chloroform.

2.1 Vesicle preparation

Vesicles were prepared either by electroformation [32]
or by a standard swelling procedure [30]. For the elec-
troformed vesicles we used a glass chamber with two
platinum electrodes connected to an electric-field gener-
ator. A few microliters of the polymer solution (1 mg/ml
dissolved in chloroform) were initially deposited on both
electrodes and dried under vacuum over night. Then,
after applying an AC field of 5 V and 10 Hz for a period
of 10 minutes, water was introduced in the chamber and
the amplitude was gradually increased up to 9 V within
the next 10 minutes. Preparation time did not exceed
30 minutes. The average radius of the formed vesicles
was about 40 µm. Applying lower voltages, ca. 800 mV,
for the electroformation yielded smaller vesicles with
no difference in the rheological characteristics. Higher
voltages were preferably used because the growing times
were thereby significantly reduced —from about 3 hours
at 800 mV to 15 minutes at 9 V.

In the swelling procedure a few drops (about 30 µl)
of the polymer solution (40 mg/ml in chloroform) were
spread on a roughened Teflon plate and dried under vac-
uum. The sample was prehydrated and swollen in 100 mM
sucrose solution. The total preparation time was about
3 days. The formed vesicles were generally of smaller ra-
dius (about 15 µm on the average) but exhibited more
excess area than the electroformed vesicles, which were
mainly spherical.

Preparation of vesicles following the two different pro-
tocols was necessitated from the requirements imposed
by the micropipette aspiration and the viscosity measure-
ments. Vesicles for pipette aspiration need to have enough
excess surface area to allow extension of the membrane
into the pipette. Therefore, these vesicles were prepared
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by swelling on Teflon. For the viscosity measurement, vesi-
cles need to have very little excess surface area (see below),
which is achieved with the electroformation method. The
vesicles for micropipette aspiration were observed with an
inverse microscope (Axiovert 135 from Carl Zeiss). As an
illumination source in both, micropipette and viscosity,
measurements we used a halogen lamp with a wide-band
green filter.

Temperature scans on polymer solutions performed
with a differential scanning calorimeter (Microcal) did not
show any signs of a phase transition of the polymer in the
5◦ to 60 ◦C temperature interval. Of course, this does not
rule out possible slight changes of the material properties.

2.2 Elasticity measurements

Elastic properties of PB-PEO membranes were studied via
micropipette aspiration of slightly deflated vesicles pre-
pared by the standard swelling procedure [30]. The exper-
imental chamber was pre-coated with albumin (1 mg/ml)
to avoid adhesion of the vesicles to the glass walls, and
then filled with a glucose solution1. Several tens of micro-
liters of the vesicle suspension were transferred into the ex-
perimental chamber. Temperature was regulated by means
of a circulating-water jacket connected to a thermostat.
The micropipette experiments were performed at 10 ◦C to
minimize evaporation from the experimental chamber. We
used an open chamber to allow access for micropipettes.
Shortly, the experimental procedure consists in aspirating
a vesicle, applying different suction pressures and measur-
ing the area response of the vesicle membrane. Aspiration
was realized by means of a hydrostatic pressure system
with a motorized computer-controlled vertical stage [31].
The suction pressures ranged from 10 to 2×104 dyn/cm2.
Micropipettes were generally produced with a radius of
about 4 µm. Manipulating vesicles with thinner pipettes
proved to be inefficient —tension could cause instability
and pinching of the surface aspirated in the pipette. With
larger pipettes the accuracy of measuring the area change
was lower. In order to determine the variation in the vesi-
cle area, we followed the evolution of three geometrical
parameters: the radius of the outer vesicle portion, the
projection length inside the pipette and the position of
the tip of the pipette. The latter was used to monitor the
pipette location in order to correct for possible shifts dur-
ing measurements. We calibrated our setup by measuring
elastic moduli for the standard lipid stearoyloleoylphos-
phatidylcholine. Consistent with literature values, we ob-
tained kC = 30 ± 4kBT for the bending modulus [33,34]
and Ka = 230 ± 10 dyn/cm for the stretching modulus
[34] in sucrose/glucose solution.

1 The difference between the refractive indices of glucose and
sucrose (swelling solvent) allows for better observation of the
vesicles.

2.3 Viscosity measurements

Two different experimental approaches were applied for
measuring shear surface viscosity of the polymer mem-
brane: falling-ball viscosimetry [8,9,18] and optical dy-
namometry [9]. Both of these techniques make use of a
latex particle (Polyscience, Warrington, PA). The latex
sphere is attached to the membrane. (We chose to work
with vesicles of size generally larger than 50 µm in radius.)
The bead intercepts the vesicle surface in a disc the radius
of which depends on the particle penetration towards the
vesicle interior; see Figure 1. The particle motion along
the membrane is tracked. The vesicles used for the viscos-
ity measurements were prepared by electroformation. The
study was performed at room temperature.

The particle radius was measured prior to adhesion to
the vesicle. The bead was let to sediment freely in bulk
water. We measured the falling velocity vfree. Stokes law
provides the particle radius: Rb =

√
9ηvfree
2∆ρ g , where η is

the water viscosity at the corresponding temperature, ∆ρ
is the latex-water density difference (∼= 0.05 g/ml; it was
measured via centrifugation of particles in glycerol solu-
tions), and g is the gravitational acceleration.

The experimental procedure starts with bringing the
latex bead (of radius about 5 µm) to a previously selected
vesicle by means of a long-distance-working optical trap.
(The setup design is described in [35].) The latter consists
of two counter-propagating laser beams focused inside the
experimental chamber. When brought into the vicinity of
the membrane, the particle spontaneously sticks to it and
can no longer be detached by the optical-trap forces (a
few tens of piconewtons). The dynamics of the adhesion
process was studied in detail by Dietrich et al. [36]. Finally,
the bead attains a fixed position normal to the membrane
and can be displaced only tangentially along the vesicle
surface.

In the falling-ball viscosimetry method [8,9,18], after
attaching the particle to the membrane, we bring it to
the upper hemisphere of the vesicle by means of the trap
(Fig. 1a). Then, the bead is released and its sedimen-
tation path towards the vesicle bottom is recorded. We
observe the system from above. The image is refocused
to follow the falling particle. The sedimentation velocity
contains the desired information about the membrane
viscosity [8,18].

The second technique used for the extraction of the
membrane viscosity, optical dynamometry, is based on fol-
lowing the particle movement under the action of the radi-
ation pressure force of the optical trap. First, the particle
is brought to a pole of the vesicle, where the bead basically
“sees” the membrane as horizontal and flat. Then the op-
tical trap is switched off and displaced about one particle
radius. After switching the laser beams on again, the ra-
diation pressure creates an attraction field that drags the
particle toward the laser beams axis (Fig. 1c). The trajec-
tory of the particle is recorded. The measured parameter
is the drag coefficient of the particle motion. The radiation
pressure was calibrated for each of the employed particles
prior to adhesion in the following manner: The bead was
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Fig. 1. a) Falling-ball viscosimetry. A particle attached to the vesicle membrane sediments towards the vesicle bottom. b) Close-
up view of the particle at the vesicle equator; there we measure the maximal sedimentation velocity. c) Optical-trap dynamom-
etry. The sketch is exaggerated in terms of distances —the trap is usually positioned at the particle periphery.

Fig. 2. Tether-pulling experiment. The vesicle is attached to
the electrode. The radius of the tether is magnified for clarity.

subjected to a flow of constant velocity. From the lowest
speed at which the particle escapes the optical trap one
can determine the optical force by balancing it with the
Stokes resistance. The radiation pressure force can be also
computed by applying the Generalized Lorenz-Mie theory
(for details on trapping force determination see [9]). Both
approaches give consistent results.

2.4 Tether-pulling experiments

The last experimental scenario deals with tether formation
out of a vesicle (Fig. 2). We worked with vesicles, which
were tightly attached (thus immobile) to the electrode of
the electroformation chamber. Pulling out a tether was
done with a latex particle of small penetration depth in the
vesicle (small contact area)2. By displacing the attached
particle with the optical trap we pulled out the tether.
The applied forces were on the order of several tens of
piconewtons. After releasing the latex bead, it moves back

2 When pulling particles with large penetration we could
form short tubes of radius of about 5 µm.

towards the vesicle body dragged by the retracting tether.
The particle trajectory back to the vesicle was recorded
as a function of time.

3 Results and data analysis

3.1 Micropipette aspiration: bending and stretching
elasticity

For the micropipette experiments we selected vesicles that
were slightly deflated, i.e., exhibiting excess surface area.
We trapped a vesicle applying low suction pressure and
followed the evolution in the vesicle area by increasing
the aspiration pressure, i.e., the surface tension τ . For
calculating the membrane area A, we considered the aspi-
rated vesicle as a geometrical body, where the part of the
vesicle inside the pipette is described as a cylinder with a
hemispherical cap of radius equal to the internal pipette
radius.

We were interested in two modes of deformation: at
low tensions (entropic regime) the thermal fluctuations of
the membrane are gradually flattened out; in the high-
tension regime the membrane is stretched. The relative
area change in the entropic regime [29,37] is described by

A − A0

A0
=

kB T

8π kC
ln τ/τi , (1)

where A0 is the initial projected area of the vesicle, kBT is
the thermal energy, kC is the bending elasticity modulus
and τi is the initial tension at which A = A0. Figure 3a
presents data collected from six vesicles. The slope of the
linear fit for low tensions provides the value of kC. We find
it to be 42 ± 5 kBT .

In the high-tension regime, vesicle stretching [29,37] is
described by

A − A0

A0
=

τ

Ka
, (2)
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Fig. 3. Elastic properties of polymer vesicles measured via mi-
cromanipulation with pipettes. a) Entropic regime (smoothing
the vesicle fluctuations): The slope of the solid line according
to equation (1) provides kC; τi = 0.02 dyn/cm; the symbols
present data from different vesicles. b) High-tension regime of
membrane stretching. The solid curve is a fit over the entire
interval of tensions assuming a superposition of bending and
stretching elasticities (Eqs. (1) and (2)); kC = 42 ± 5kBT and
Ka = 470 ± 15 dyn/cm.

where Ka is the stretching elasticity constant. The same
data as in Figure 3a is plotted in linear τ -scale in
Figure 3b with the experimental error indicated. The
slope of a linear fit in the high-tension region gives
Ka = 450 ± 85 dyn/cm. For fitting the entire range of
tension one can assume a superposition of the two con-
tributions —elastic bending and stretching [29,34]. The
solid curve in Figure 3a is a fit where kC = 42±5kBT and
Ka = 470±15 dyn/cm. We estimate the crossover tension
between the two regimes τc ≡ Ka kBT

8π kC
∼= 0.5 dyn/cm. Even

the highest induced tensions (about 23 dyn/cm) were in-
sufficient for rupturing the vesicle membrane. Compared
to lipid bilayers where lysis tension is typically lower than
10 dyn/cm [30], polymersomes appear to be more resistant
to rupture.

3.2 Falling-ball viscosimetry

After being brought to the upper hemisphere of the vesi-
cle and released from the trap, the latex particle sediments

towards the bottom of the vesicle. The resistance experi-
enced by the bead is characterized by the drag coefficient
ζ. The bead trajectory can be described exactly by an an-
alytical solution of the equation of motion; see [18] and
[8]. For the purpose of analyzing experiments on polymer-
somes, it suffices to determine the maximal sedimentation
velocity detected at the vesicle equator. There the parti-
cle weight exactly balances the friction —see Figure 1b
(otherwise the gravitational force enters the force balance
through its projection onto the vesicle surface),

m̃g = ζ veq , (3)

where m̃ is the particle mass corrected for buoyancy and
veq is the particle sedimentation velocity at the vesicle
equator. The drag coefficient ζ contains information about
the shear surface viscosity of the membrane ηs. Deduc-
ing ηs from ζ requires computing the hydrodynamic flow
around the particle when it moves along the spherical sur-
face. The theoretical approach was presented elsewhere
[38]. Detailed analysis [8] showed the presence of finite-
size effects, i.e., increased friction due to recirculation of
the water enclosed in the vesicle. These effects, however,
are negligible for the systems discussed here. We worked
with vesicles more than 10 times larger than the latex
particles and for most of the systems the membrane was
intercepting the latex bead through the bead center (i.e.,
through the bead equator). Therefore, the particles could
be considered as moving on a flat surface. In this case,
one may estimate ηs from ζ by means of the following
empirical relation3:

ζ = 6πηRb + 2.93 ηs

(
ηs

ηRb

)−0.12

, (4)

which is an approximation of the numerical solution of the
problem [8,38]. Rb is the bead radius. Doing so, we ob-
tain for the shear surface viscosity of polymer membranes
ηs

∼= 1.5 × 10−3 dyn s/cm. This value is reproduced to
within ±8% when the experiment is repeated many times
on different vesicles.

3.3 Optical dynamometry

The driving force in optical dynamometry is the radi-
ation pressure force FRP, exerted by the optical trap
(Fig. 1c). For distances smaller than about 0.6 Rb, FRP is
approximately proportional to the trap-bead distance x:
FRP = kRP x, where kRP is the radiation pressure spring
constant. The force balance for the attracted bead gives

0 = kRP x − ζ ẋ . (5)

The solution reads

x (t) = x0 exp (−t/tc) , (6)

3 Note that the units of the shear surface viscosity are [bulk
viscosity] × [layer thickness].
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Fig. 4. Optical-trapping dynamics. Scaled distance between
the particle and the laser beam axis (see Fig. 1c) versus time.
The solid curve is a fit according to equation (6) with tc = 2.1 s.

where x0 is the initial distance between the bead center
and the trap axis and tc = ζ/kRP is the characteristic
time of the process. We worked with particles whose cen-
ters were lying in the plane of the membrane and therefore
the applied radiation pressure force was not inducing out-
of-plane deformations as discussed in [9]. Figure 4 shows
an example of the reduced particle-trap distance (x/x0)
after switching on the optical trap. The particle was of ra-
dius 5.24 µm and was penetrating the vesicle so that the
membrane intercepted the bead through its equator (the
contact angle was close to 90◦). Because the vesicle was
large (about 120 µm in radius) we may assume the mem-
brane as flat. The exponential fit provides tc = 2.1 s for
the characteristic time of the process. For this measure-
ment kRP = 1.21× 10−3 dyn/cm. From the characteristic
time we estimate ζ. To deduce the shear surface viscosity
from the friction coefficient we apply equation (4). The av-
erage value from all optical dynamometry measurements
is ηs

∼= (1.7± 0.3)× 10−3 dyn s/cm, which is in very good
agreement with the results from falling-ball viscosimetry
measurements.

3.4 Tether pulling: intermonolayer friction

A sketch of the vesicle-tether geometry is presented in Fig-
ure 2. We denote the vesicle radius Rv. The tether is as-
sumed to be a cylindrical tube [26] made of a membrane
bilayer. It is connected to the vesicle through a funnel-
shaped neck. The tether is of length Lt and radius Rt.
It is pulled out of the vesicle by displacing a latex par-
ticle having a “point” contact with the membrane. Re-
traction of the tether amounts to flowing the tether mate-
rial through the connecting neck. This necessarily involves
in-plane shear of the membrane. The walls of the tether
cylinder consist of a bilayer, i.e., two molecular layers of
different radii. During retraction the mass fluxes of the
inner and outer monolayers have to be equal. Because the
internal one is of smaller radius, the material of the inner
leaflet has to flow faster than that of the external one. This
induces friction between the two leaflets (intermonolayer

coupling). To model the retraction kinetics we will account
for different dissipative terms relevant to our system. In
contrast to lipid membranes [19], as we will see, and due to
the high intrinsic viscosity of our polymer membranes, the
dissipation occurs mainly within the membrane. There-
fore, by modeling the tether retraction kinetics, one can
estimate the magnitude of intermonolayer coupling.

In order to quantitatively describe the behavior of the
relaxing tether after the bead is released, we regard the
membrane as an elastic body constituted of two mono-
layers that can slide relative to each other. Pulling out a
tether costs energy due to “bending and stretching” of the
membrane. Further, we will find out that the elastic ten-
sion generated on the vesicle by this deformation, is very
small —it falls within the entropic regime. Therefore, we
account for an “effective” (or “entropic”) tension of the
membrane [39]. Finally, the elastic energy of the bilayer
after the tether is formed can be expressed as a sum of
bending elasticity, stretching elasticity, non-local bending
(due to differential stretching of the two monolayers) [15,
21,40] and entropic stretching [39]:

Wel = π kCLtRt

(
1
Rt

− C0

)2

+
1
2
Ka

(A − A0)
2

A0

+
1
2
kr

(δAm − δAm
0 ) 2

Ah2
+

At∫
0

τ (A′
t) dA′

t . (7)

Here C0 is the spontaneous curvature of the mem-
brane [41], kr is the non-local bending modulus [15,40,42],
h is the membrane thickness, δAm is the area difference
between the two membrane monolayers with δAm

0 corre-
sponding to the relaxed equilibrium difference. For the
non-local bending term we assume that the area change
takes place only in the parts of the monolayers, which form
the tether: δAm − δAm

0
∼= 2πLth. The change in the total

vesicle area can be taken roughly equal to the surface of
the formed tether: A − A0

∼= At = 2πRtLt. τ (At) is the
entropic vesicle tension when a tether of area At is pulled
out [39]:

τ (At) = τ0 exp
(
At/Ã

)
, Ã = A

kBT

8πkC
; (8)

τ0 is the surface tension of the membrane before pulling
the tether. For the spontaneous curvature, we take C0

∼=
1/Rv which, compared to 1/Rt, gives a negligible contri-
bution.

To pull out a tether of length L0
t we exert a force FRP

on the bead held by the optical trap. The equilibrium in
the static regime, before releasing the tether to retract
back, is described by the minimum of the partial deriva-
tive of the free energy (7) including a term −FRPLt, with
respect to Lt. This gives

π kC

R0
t

+
KaR

0
tA

0
t

2R2
v

+
3kCR0

tA
0
t

2R2
vh

2

+ 2πτ0R
0
t exp

(
A0

t/Ã
)
− FRP = 0 , (9)
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where A0
t = 2πR0

tL
0
t is the initial tether area. From mini-

mizing the elastic energy stored in the system with respect
to Rt one obtains

− π kC

(R0
t )

2 +
KaA

0
t

2R2
v

+
3kCA0

t

2R2
vh

2
+ 2πτ0 exp

(
A0

t/Ã
)

= 0. (10)

In the system of equations (9) and (10) we have two un-
knowns —the initial radius of the formed tether, R0

t , and
the surface tension of the unperturbed vesicle, τ0. While
the tether is well visible under phase contrast observation,
the radius, R0

t , is not experimentally accessible and has to
be determined by solving this system for R0

t :

R0
t =

2πkC

FRP
. (11)

Typically, we find R0
t ≈ 0.03–0.05 µm. Before we con-

tinue with assessing τ0, we compare the two bending terms
in the elastic energy, equation (7). The non-local bending
modulus kr for lipids is reported to be about three to four
times the value of the local bending modulus kC [40,23].
Having measured for the elastic constant Ka and kC val-
ues close to those reported for lipids, we assume that the
kr/kC ratio remains the same for the polymer membranes.
We take kr = 3kC. Then, the non-local stretching contribu-
tion is more than two orders of magnitude smaller than the
membrane bending elasticity and will be ignored in the fol-
lowing. In addition, we find out that the change in the rel-
ative vesicle area, (A − A0)/A0 due to the formed tether
is small (less than about 5 × 10−4). The membrane is far
from the regime of elastic stretching (see Fig. 3: the elas-
tic stretching regime starts at (A − A0)/A0 ≈ 5 × 10−3).
When pulling the tether we remain in the regime of “en-
tropic” tensions [39] and further, for simplicity, we will
neglect the elastic stretching term in the energy. Then for
τ0, from equation (9) we arrive at

τ0 =
kC

2 (R0
t )

2 exp
(
A0

t/Ã
) . (12)

For all of our measurements we find τ0 � 0.1 dyn/cm.
At fully extended tethers the contribution from entropic
stretching to the elastic energy is of the order of the bend-
ing term.

We will consider now the relevant dissipative contri-
butions involved in the tether retraction. The dissipated
power caused by the Stokes resistance on the sphere is
ΦSt = 6πηRb

(
dLt
dt

)2
, where dLt/dt is the speed of the re-

tracting bead. The friction caused by the motion of the
whole tether body modeled as a cylinder moving longi-
tudinally is Φcyl = 4πηLt

2 ln(Lt/Rt)−1

(
dLt
dt

)2
[43]. We account

also for the slip occurring between the two monolayers
composing the membrane [15,16]. In lipid systems, forces
induced by membrane shear flows are often neglected, as
dissipation in lipid membranes is assumed to occur in the
surrounding fluid [15]. However, Hochmuth et al. [20] es-
timated that in lipid membranes, shear surface viscosity
contributes to about 20% to the intermonolayer friction. In

our case, the measured surface viscosity is orders of mag-
nitude higher than the one measured in lipid membranes.
Therefore, to account for possible effects of shearing the
membrane, we introduce an effective shear surface viscos-
ity, ηeff , in the same manner as in [20]. Essentially, ηeff is
a superposition of the intermonolayer friction [19,20] and
the membrane shear surface viscosity

ηeff = bh2 ln (Rv/Rt) + 2ηs , (13)

where b is the coefficient of interlayer slip. The contri-
bution of the corresponding in-plane shear through the
tether neck caused by the longitudinal retraction of the
tether is Φs,L = 2πηeff

(
dLt
dt

)2
[19,20]. In a similar manner

we account for the shear potentially caused by simulta-
neous shrinking (normal relaxation) of the tether radius:
Φs,R = 2πηeff

L2
t

R2
t

(
dRt
dt

)2
. The hydrodynamic dissipation in

the enclosed water can be estimated as follows: in direction
lateral to the tether axis we have Φw,L

∼= ηRv

(
dLt
dt

)2
, and

in normal direction Φw,R
∼= ηLt

(
dRt
dt

)2
with prefactors of

order 1. To compare the different dissipative terms, we in-
troduce the experimentally measured values for the elastic
constants: kC ≈ 1.7 × 10−12 erg4. For the membrane shear
surface viscosity we take the value measured from the
falling-ball viscosimetry experiments, ηs ≈ 1.5 × 10−3 sp
(ηs enters the calculation through the effective viscosity
ηeff , see Eq. (13); the value of b is unknown and for a lower
limit one can take ηeff = 2ηs). A comparison of the differ-
ent dissipative contributions shows that the only essential
term for our experimental conditions is the shear dissipa-
tion, Φs,L + Φs,R. In contrast to lipid membranes [19,20],
where the leading term is the Stokes resistance, the shear
dissipation in polymersome tethers surpasses the rest of
the terms by about two orders of magnitude. Thus the
analysis performed in [20] does not apply to our system.
The tether dynamics can be described approximately by
the following relationship:

−dWel

dt
= Φs,L + Φs,R . (14)

When the system is observed from above, the tether
retracts in the horizontal plane of observation5. While the
retraction of the tether Lt is the main observable, the ra-
dius Rt is not experimentally accessible. For the analysis
one can therefore consider two extreme cases: i) Equili-
brated Rt: If the tether radius equilibration (normal re-
laxation) is much faster than the characteristic time of
the tether retraction (longitudinal relaxation), then Rt is
controlled by the minimum of the elastic energy stored in

4 The tether-pulling experiments were performed at 25 ◦C.
We assume that the values of Ka and KC, measured at 10 ◦C,
do not vary significantly with temperature as DSC temperature
scans suggest.

5 We suppose gravity has a negligible effect on the bead tra-
jectory, because we did not notice any defocusing of the re-
tracting particle. The displacement was relatively fast and the
particle remained in the plane of observation. Moreover, effects
due to possible flip-flop are ignored.
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the system after the bead is released from the optical trap
(t � t0, FRP = 0):

− π kC

(Rt)
2 + 2πτ0 exp

(
At/Ã

)
= 0 ; (15)

At/Ã is small (on the average 0.1 < At/Ã < 0.3). For
a rough estimate of Rt we equate the exponent in the
entropic term with 1. Then,

Rt ≈
√

kC

2τ0
, (16)

i.e., the tether radius stays approximately constant
throughout the retraction process. For the initial mo-
ment t0 (when Lt = L0

t ), the thus calculated value of the
tether radius

(
Rt ≡ R0

t

)
corresponds (within ± 5% ) to

the value of the tether radius determined from minimiz-
ing the elastic energy of the system at the moment before
releasing the tether; see equation (11). ii) Equilibrated Lt

(constant Rt): When the longitudinal relaxation process
is much faster, i.e., Lt retracts very rapidly compared to
the tether radius equilibration, one may assume that Rt

remains roughly equal to its initial value (Rt
∼= R0

t ). Since
both approaches, i) and ii), suggest that the tether radius
stays approximately constant, we do not expect these two
extreme cases to give significantly different results. Hence,
a more detailed analysis of the dynamics of the radius is
not necessary at this stage.

We now analyze the data separately using either as-
sumption. First, we consider the case when the tether re-
traction allows for equilibration of Rt. Introducing the ex-
pression for the free energy in equation (7) (we omit the
elastic stretching and the non-local bending terms) into
equation (14) turns the latter into an equation of motion
for the tether length. The solution for Lt is

Lt = L0
t

(
1 − t − t0

tR

)
, (17)

where

tR =
L0

tηeff√
2kCτ0

. (18)

In the alternative case, where Rt is assumed to remain
equal to its initial value during the tether retraction, one
obtains the following time dependence:

g (Lt) =
t − t0

tL
, (19)

where

g (Lt) = 1 − Lt

L0
t

+
Ã

A0
t

ln
(

1
2

+
1
2

exp
A0

t − At

Ã

)
(20)

and

tL =
A0

tηeff

π kC
(21)

is the characteristic relaxation time of the process.
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Fig. 5. Relaxation of a pulled tether in g (Lt) vs. time coor-
dinates; g (Lt) is defined in equation (20). The inset presents
the raw time dependence of the retracting tether length Lt(t).
The moment when the bead is released (t0 = 6.4 s) is indicated
with an arrow. The geometrical parameters of the system are:
Rv = 40 µm, Rb = 5.1 µm, R0

t= 0.026 µm, L0
t= 39 µm. The

solid line is a fit according to equation (17) with a single fit-
ting parameter, tR = 23 s. The dashed line is a fit following
equation (19); tL = 39 s.

Fitting the experimental time dependence of Lt with
equation (17), provides the value of tR, while a linear fit
for g (Lt) vs. time according equation (19) provides the
value of tL. These are single-parameter fits since the only
unknown parameter is ηeff . Using equations (18) and (21),
one obtains the effective viscosity ηeff . From equation (13)
one can then estimate the intermonolayer friction coeffi-
cient b. For the characteristic thickness of the hydropho-
bic bilayer we have taken h = 8±0.5 nm. The hydrophilic
PEO layer is of thickness 3 nm. These values were obtained
from fitting scattering data from small-angle X-ray scat-
tering [44]. The thickness of the polymersome membrane
is approximately twice the thickness of lipid membranes.

Figure 5 gives an example for the time dependence of
the function g (Lt) for one vesicle calculated from the ex-
perimental data; the raw data for Lt (t) is presented in the
inset of the figure. The geometrical parameters of the sys-
tem are indicated in the figure caption. The open circles
present the set of experimental data points (the accuracy
of the measurement is roughly reflected by the size of the
circles). We analyzed our data using equations (17) and
(19). The theoretical predictions are displayed in g (Lt)
vs. time coordinates; the linear fit for Lt (t) according to
equation (17) is displayed in the inset as well (solid line).
The fits were performed for a limited Lt-interval —only
down to about one particle diameter, ca 10 µm. For shorter
tether lengths (or distances to the vesicle body), one nat-
urally expects slowing-down effects due to the presence
of the vesicle surface. The dependence predicted by the
model for equilibrated Lt (constant Rt) fits the experi-
mental data in a larger time interval.

The results from six tether-pulling experiments on four
different vesicles are presented in Table 1; see the caption
for details. For the average value of the interfacial coupling
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Table 1. Experimental data for six tether-pulling events. The first three experiments were performed on the same vesicle.
The initial tether radius is calculated according to equation (11). The shear surface viscosity was measured on each vesicle by
means of falling-ball experiments performed with a second latex particle; the viscosity of vesicle (d) was measured only with
the optical dynamometry procedure. Columns (9) and (12) contain the values of the interfacial coupling constant, b, calculated
correspondingly from the two relaxation times, tR and tL; in brackets we give the percentage contribution of the interfacial slip,
bh2 ln (Rv/Rt), to the effective surface viscosity ηeff ; see equation (13). The latex particles used in all tether experiments were
of radius 5 ± 0.2µm.

(1)

Tether
number
(vesicle)

(2)

Vesicle
radius,
Rv [µm]

(3)

Initial
tether
length,

0
tL

[µm]

(4)

Initial
tether
radius,

0
tR

[µm]

(5)
Initial
vesicle
surface
energy

τ0,
[erg/cm2]

(6)

Shear
surface

viscosity,

sη  103

[dyn.s/cm]

(7)

Normal
relaxation

time
tR, [s]

(8)
Effective

shear surface
viscosity effη

(calculated
from tR) × 103

[dyn.s/cm]

(9)
Interfacial
coupling.
b × 10-8

[dyn.s/cm3]
(contribution
to effη , %)

(10)

Longitudinal
relaxation

time
tL, [s]

(11)
Effective

shear surface
viscosity effη

(calculated
from tL) × 103

[dyn.s/cm]

(12)
Interfacial
coupling.
b × 10-8

[dyn.s/cm3]
(contribution
to effη , %)

1 (a) 40 39 0.026 0.092 1.4 23 3.32 1.11  (15.7 %) 39 3.33 1.12 (15.9 %)

2 (a) 40 34 0.026 0.096 1.4 20 3.39 1.26  (17.4 %) 38 3.72 1.96 (24.7 %)

3 (a) 40 42 0.025 0.098 1.4 24 3.33 1.12  (15.9 %) 39 3.21 0.9  (12.8 %)

4 (b) 79 28 0.045 0.038 1.5 31 4.01 2.11  (25.2 %) 53 3.64 1.34 (17.6 %)

5 (c) 121 53 0.047 0.036 1.38 52 3.46 1.39  (20.2 %) 90 3.13 0.74 (11.8 %)

6 (d) 64 44 0.033 0.066 1.7 42 4.56 2.39  (25.4 %) 68 4.05 1.34 (16.0 %)

constant we obtain b ∼= (1.3 ± 0.6) × 108 dyn s/cm3. The
intermonolayer slip contributes about 20% to the effective
dissipation within the membrane.

4 Discussion and conclusions

The performed experiments were aimed at estimating the
mechanical and rheological properties of a novel class of
polymer membranes. Interestingly, the polymersomes ex-
hibit static elastic properties, which are not very far from
those of fluid lipid membranes [4]. The bending elasticity
modulus measured by micropipette aspiration is similar
to that reported for lipids. For the stretching elasticity
modulus we obtain values that are only slightly higher
than those reported for lipids. Compared to earlier ex-
periments on similar polymers in terms of molecular side
groups and chain length [4,10], our value for the bending
modulus appears to be consistent, whereas for the stretch-
ing modulus our measurement gives a significantly higher
result. Clearly, systematic studies of elastic moduli as a
function of chain length and hydrophilic to hydrophobic
fraction are needed.

Our major new insight concerns the viscous charac-
teristics of these membranes. We measured the shear sur-
face viscosity and made an estimation of the interlayer
viscous drag. If we compare the present viscosity mea-
surements on polymersomes with the same measurements
on lipid SOPC or DMPC vesicles [8,9], we find the strik-
ing fact that the viscosity of polymer membranes is about
500 times larger. The slow dynamics in the polymer mem-
branes is obvious already when following the mobility of
the latex probe: while for a lipid vesicle of radius 40 µm a
bead of radius 5 µm takes about 2 min to span the pole-
to-pole vesicle distance, for the polymersomes this time is
more than 2 hours.

The tether-pulling experiments we performed provide
a supplementary insight into the properties of polymer
membranes. We analyzed our experiments testing two
models for the relaxation process of the tether that give
very similar results. Comparison of the friction terms
shows that effective surface viscosity (ηeff) is the main
source of dissipation of which intermonolayer friction con-
stitutes about 20%. The interfacial coupling constant b
turns out to be an order of magnitude higher than those
of lipid membranes, where the reported values for b are
between 106 and 107 dyn s/cm3 [15,28]. A plausible ex-
planation for the high interfacial drag is the structure of
the polymer molecule. Having a “single-tail” hydropho-
bic part, in comparison with the two tails of the lipid
molecules, it might be easier for a polymer molecule from
one monolayer to interpenetrate in the opposing mono-
layer and thus render the monolayer slip difficult.

In addition, a closer look at our analysis of the tether-
pulling experiments suggests that one can introduce an
arbitrary energy contribution, which can be linearized
around the tether area. Inserted in the energy expression,
equation (7), such a linear term will lead to the same types
of solutions for the dynamics of the retracting tether. In-
terestingly, this contribution could also be an adhesion en-
ergy term eventually induced by the contact of our vesicles
with the electrode or adjacent vesicles. In this sense our
analyses appear to be quite robust.

Because of the relatively low value of the measured
bending elasticity modulus for the polymer membranes,
one would expect to see thermal shape fluctuations for
deflated (with excess area) vesicles. However, these mem-
brane undulations are extremely slow. Detailed analysis
of the membrane fluctuation behavior and its tempera-
ture dependence will be the object of future work. For
normal lipids, membrane undulations are damped out by
the surrounding media (e.g., water) viscosity [45]. In con-
trast, the intuitive conjecture for the polymer membranes
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is that the large characteristic times of the undulations
are mainly due to viscous dissipation within the bilayer
membrane.

Compared to lipids, synthetic polymer chains can offer
an ample diversity in designing novel artificial membranes
with specific mechanical characteristics. The preparation
and characterization of special membranes of enhanced
robustness and stiffness from purely artificial or biologi-
cally modified compounds is rather inviting with regard
to fields like rheology and transport, encapsulation, drug
and gene delivery. The possibility to include polymeric
segments that respond to pH, ionic strength or tempera-
ture would further allow to specifically control membrane
functions in different biological environments. In addition,
a special property of some polymer membranes, depend-
ing on the particular chemistry of the molecules, is the
possibility for a lateral crosslinking within the membrane,
which can turn vesicles into solid-like shells (see, e.g., [46]).
Polymerized vesicles are potentially suitable for areas like
oral drug delivery [47].
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